08/12/2008

Американские ученые предложили метод получения гибких элементов для солнечных батарей

Калифорнийские ученые института химии и химической инженерии и института прикладной физики создали совместный труд, в котором описали возможность совмещения высокой эффективности и гибкости солнечных элементов путем стабилизации кремниевых нитей в полимерной матрице.

До настоящего времени на основе гибких субстратов, таких как нержавеющая сталь и полимерные пленки, удавалось получить солнечные элементы лишь из аморфных или поликристаллических полупроводниковых материалов, что существенно снижало эффективность таких устройств по сравнению с использованием монокристаллов Si и GaAs.

В работе под названием «Flexible Polymer-Embedded Si Wire Arrays» исследователи описали процесс получения вертикально ориентированных кремниевых нитей диаметром 1,5 – 2 мкм и длиной около 100 мкм. Массивы Si нитей были выращены по механизму «пар-жидкость-кристалл» на ориентированной подложке Si(111). В качестве прекурсора использовался SiCl4, синтез проводили при 1000˚С в атмосфере водорода, а в качестве гибкой матрицы в эксперименте был использован полидиметилсилоксан. В ходе синтеза разбавленный раствор полимера наносили на кремниевую подложку, а затем выпаривали его и отжигали. Полимерную пленку механически отделяли от кремниевой основы с помощью бритвенного лезвия.

Полученные образцы, по заявлению ученых, демонстрируют высокое светопоглощение, при этом нити в плоскости пленки высоко упорядочены. Они образуют плоскую кубическую упаковку с периодом порядка 7 мкм. Полученный материал демонстрирует хорошую проводимость вдоль направления роста нитей и большое сопротивление в перпендикулярном направлении. Толщина полимерной пленки составляет менее 50% процентов от длины Si нитей, оставляя их концы доступными для нанесения электрического контакта. Подобная морфология материала открывает большие перспективы для производства на его основе различных оптоэлектронных устройств.


Другие новости этого раздела:

08/06/2021

United Airlines закупит 15 углеродно нейтральных самолетов

07/06/2021

В Тюменской области создадут карбоновую станцию

04/06/2021

Минэкономразвития РФ работает над Концепцией по развитию производства и использования электротранспорта в России на период до 2030 года

«Новатэк» и «Северсталь» подписали соглашение о совместном проекте по выпуску и использованию водорода

26/05/2021

BASF и объединение RWE могут вместе реализовать проект морской ветроэнергетики стоимостью 4 миллиарда евро

Cummins и Iberdrola построят в Испании электролизный завод для производства водорода мощностью 500 МВт

29/04/2021

Ученые Института катализа СО РАН предложили получать водород и этилен из природного газа с помощью лазерного излучения

23/04/2021

thyssenkrupp заключил контракт на поставку производства зеленого водорода с CF Industries

20/04/2021

В подземном руднике «Северо-Западной Фосфорной Компании» внедряется новый процесс ─дистанционное бурение глубоких скважин

Физики УрФУ разработали новую технологию переработки жидких отходов добычи калийных удобрений

14/04/2021

IKEA потратит 21 миллиард рублей на проект использования солнечной энергии в России

13/04/2021

Ученые Воронежского государственного лесотехнического университета создадут карбоновый полигон и ферму

26/03/2021

Центр "Композитная долина" начнет работать в Тульской области в 2023 году

23/03/2021

В подземном руднике АО «СЗФК» приступил к работе новый грейдер Veekmas

Новгородский музей-заповедник получил спектрометр от "Акрона"