01/12/2022

Новые  перспективы оксинитрида бора

Российские ученые расшифровали кристаллическую структуру оксинитрида бора (BNO) — материала с контролируемыми электронными и оптическими свойствами. Ранее считалось, что атомы кислорода встраиваются в решетку h-BN без изменения ее строения.

Ученые изучили материал с помощью современных вычислительных методов моделирования и показали, что кристаллическая структура сильно изменяется, а вместе с ней меняются и свойства материала.

Полученные результаты позволят расширить области потенциа льного применения двумерных наноматериалов, а также создать совершенно новые приборы на их основе. Результаты работы опубликованы в журнале Physical Chemistry Chemical Physics (Phys. Chem. Chem. Phys., 2021,23, 26178-26184).

Область наноматериаловедения находится на стадии интенсивного развития. Для увеличения эффективности новых устройств необходимо переходить к низкоразмерным наноматериалам, однако массовое их получение требует постоянного развития фундаментальных знаний и приборной базы. Важной задачей современного материаловедения является поиск возможности управления свойствами новых материалов для достижения желаемых характеристик.

Так, в 2017 году было опубликовано первое сообщение о контролируемом создании материала на основе частично окисленного нитрида бора. Эксперимент был выполнен в Национальном институте материаловедения (NIMS, г. Цукуба, Япония) (https://doi. org/10.1002/adma.201700695).

Материал изготавливается посредством постепенного добавления кислорода в структуру двумерного нитрида бора. До сих пор контролируемо менять ширину запрещенной зоны удавалось, лишь внедряя в нитрид бора атомы углерода, однако этот метод оказался очень сложным и дорогостоящим. Метод частично окисления оказался намного более простым и дешевым.

Оксинитрид бора (BNO) — перспективный материал, который совмещает в себе начальную структуру (атомную и электронную) гексагонального нитрида бора с низкой электропроводностью. Однако до сих пор было неясно, как изменяется атомная структура h-BN после окисления. Первые работы по синтезу BNO (https://doi. org/10.1002/adma.201700695) говорят о том, что атомы кислорода находятся в положении замещения атомов азота.

«Данный факт привел нас к детальному изучению влияния атомов кислорода на кристаллическую структуру оксинитрида бора. Мы начали исследование с применения эволюционного алгоритма USPEX. Метод позволяет предсказывать кристаллическую структуру исследуемого материала, исходя из знания только лишь его химического состава», — рассказывает Дмитрий Квашнин, доктор физико-математических наук, старший научный сотрудник Института биохимической физики им. Н. М. Эмануэля РАН.

Коллектив ученых из Института биохимической физики им. Н. М. Эмануэля РАН (ИБХФ РАН, Москва), Сколковского института науки и технологий (Москва) и Московского физико-технического института провел детальное изучение особенности функционализации 2d-наноматериалов с помощью численных методов компьютерного моделирования. Исследования атомной структуры и физико-химических свойств были выполнены с применением теории функционала электронной плотности, которая в настоящее время является основным инструментом вычислительного материаловедения.

Согласно данной теории, энергия основного состояния электрона однозначно определяется его электронной плотностью. Исследование возможности образования двумерных структур B—N—O при добавлении кислорода в нитрид бора, был применен эволюционный поиск переменного состава, реализованный в методе USPEX.

«С помощью эволюционного алгоритма нами был проведен первоначальный скрининг, который дал нам большой массив новых кристаллических 2d-структур состава BNO. Далее полученные структуры изучались более детально с помощью теории функционала электронной плотности», — поясняет Захар Попов, соавтор работы, кандидат физико-математических наук, старший научный сотрудник ИБХФ РАН.

В ходе исследований было показано, что легирование кислородом приводит к образованию более дефектной и менее плотной структуры. Это связано с тем, что расположение атомов кислорода с образованием эпоксидного мостика является энергетически выгодным положением при определенной концентрации по сравнению с позицией замещения. Такое расположение атомов кислорода также привело к появлению локальных дипольных моментов, которые могут придать структуре необычные пьезоэлектрические свойства.

Ранние работы по исследованию структуры BNO были основаны на концепции, что атомы кислорода внедряются в структуру гексагонального нитрида бора в позиции замещения атомов азота, не меняя при этом его структуру. Коллективу ученых удалось показать, что кристаллическая структура BNO намного сложнее.

Результаты исследования приближают возможность реального применения оксинитрида бора на практике, в частности, для дальнейшего использования в нано-, опто- и электромеханических устройствах.


Другие новости этого раздела:

26/03/2024

В подземный рудник АО «СЗФК» поступила новая техника

В КФУ предлагают новое решение для очистки сточных вод

11/03/2024

Водородный полигон собираются запустить на Сахалине летом

23/01/2024

ЕС одобрил планы компании Fortescue по строительству флагманского завода по производству экологически чистого аммиака в Норвегии

09/01/2024

Tecnimont начала инженерные работы по проекту производства удобрений в Египте

28/12/2023

"Новатэк" получил патент на крупнотоннажные технологии производства низкоуглеродного аммиака

18/12/2023

Фосфорный центр ЕвроХима будет заниматься решением прикладных производственных задач

22/11/2023

С 27 октября 2023 года генеральным директором АО «НИИК» назначен Олег Дроботущенко

"Гродно Азот" подписал контракт с ГИАПом

«Тольяттиазот» в рамках модернизации производства карбамида установит новый пластинчатый теплообменник с воздушным охлаждением

15/11/2023

Allied выбрала технологию динамического "зеленого" аммиака компании Topsoe для строительства завода в Гове

08/11/2023

«Дорогобуж» завершил проект по внедрению в технологическую схему производства аммиака парового котла производительностью 50 тонн в час

02/11/2023

"Газпром нефть" планирует сбыт водорода в Китае через партнеров

31/10/2023

Ученые обнаружили новый метод разделения редкоземельных элементов с помощью бактериального белка

30/10/2023

МИСИС разработал удобрение на основе жидкого стекла с добавлением высушенного геля из мочевины и азотистых соединений